
September 1997 The Delphi Magazine 47

Speeding Up Client/Server
by David Selwood

So you’ve implemented your
client/server application and

you want more speed? Faster exe-
cution can always be achieved and
various methods are presented in
this article. The main objectives
are to minimise network traffic and
to make improved use of the VCL
and the BDE. Example code is given
and a client/server application
which implements the discussion
is on the disk. The example uses
the IBLOCAL aliases given with
Delphi and its CUSTOMER and COUNTRY
tables with the SYSDBA username
and the default password of mas-
terkey. Some of the following will
also apply to local transactions (ie
Paradox and dBASE tables).

Faster Driving
The drivers you use for accessing a
database and server determine IO
speed. Always use the latest 32-bit
drivers for both network protocol
and database access. ODBC driv-
ers are common, but they can be
slow since they are not BDE native.
The rule is that if you can access
the database via a native BDE
driver (ie SQL Links) then do so.

The driver and aliases pages
should be reviewed with the BDE
Configuration Utility. If the table
structures are going to remain con-
sistent then ENABLE SCHEMA CACHE
should be True and a schema cache
directory should be defined. This
will improve BDE performance
since it will not be constantly fetch-
ing schema information from the
server. For each alias the SCHEMA
CACHE SIZE should be set to the
maximum number of tables your
application will have open; this
allows all tables to be cached. The
SCHEMA CACHE TIME should be -1
which means leave schema infor-
mation in the cache until the data-
base is closed. The SQLQRYMODE
should be NULL which indicates
that a query executes at the server
first. Should the query fail it is
attempted by the BDE, if the BDE
fails an exception is raised. The

SQLPASSTHRO MODE should be NOT
SHARED to avoid clashing between
pass-through SQL and Delphi’s
methods.

If you are using TCP/IP and the
server and Delphi application are
on the same machine then use the
standard TCP/IP loopback address
of 127.0.0.1 to communicate. It is
also worth checking the TCP/IP
configuration: it is often configured
to send a packet when the packet is
full on the IP layer; this can be re-
configured if this is the case.

Sharing Your Data Access
Delphi 2 and 3 allow Data Modules,
which provide a mechanism for
storing non-visual components in a
single module which can be
accessed by any unit/form. The
sharing of data access components
will minimise logging-on to data-
bases and also opening and closing
of tables. Data Modules also save
coding time as units will not have
to re-declare components. To
access these components add to
the uses clause within the imple-
mentation section the name of the
data module unit. In Delphi 2 and 3
the components in the data
module can be accessed by com-
ponent drop down list box proper-
ties. If using Delphi 1 you provide
this functionality by having all
your non-visual data access com-
ponents on a form or hard-coded in
a separate unit. This will require
hard coding in that when the unit is
initialised the datasource property
of the visual database components
should be set up to point to the
correct datasource component:

DBGrid1.DataSource:=
MainForm.DataSource1;

If you encounter violation errors
this may be because you are trying
to access components before they
are created. To resolve this select
the menu item Project|Options and
under Auto-Create Forms drag the
unit which contains the non-visual

components to the top of the list so
that it is created first.

Get Connected
Setting the TSession.KeepConnec-
tions property to true will allow
temporary TDatabase connections
to remain connected even when
inactive; this will save time in not
having to re-establish connections.
The TDatabase component has a
similar property called KeepConne-
ction and this should be set to true
to avoid multiple logging off and
back on when tables are closed and
re-opened. Should an application
not be expecting to use the server
for some time then close the TData-
base connection as this will save
resources on both the PC and net-
work. This allows other users to
access the server if connections
are limited.

Transactions
Delphi assumes an implicit transac-
tion environment which is similar
to the desktop local database
architecture. Put simply this
means that when a record is
posted, the record is committed to
the database automatically. This is
fine for local databases, but on
servers it will result in heavy net-
work traffic, since each record is
committed separately. The com-
mitting of individual records and
the required network IO and server
processing for each record will
slow your application down. The
advantage is minimum record con-
flicts between users. Also, since
this is the default transaction con-
trol the programmer does not per-
form any extra work.

The other method is explicit
transaction control. For explicit
control the application must start
and commit or rollback transac-
tions explicitly. This allows batch
operations to be performed on
records and results in less network
traffic. However, explicit control
can result in conflicts when the
same records are being operated

48 The Delphi Magazine Issue 25

on in a multi-user environment.
Because of the saving in network
traffic and the option of transac-
tion rollback, this extra power is a
worthwhile investment.

The example program allows
implicit and explicit transactions
to be applied. I suggest you have
two copies of this program running
at once and experiment perform-
ing updates on the same record.

Explicit Transaction Control
Three mechanisms are available
for explicit transaction control.
These are: firstly, use the TDatabase
component to start, commit or roll-
back transactions, secondly use
the TQuery component and thirdly
the CachedUpdates property of
TTable, TQuery or TStoredProc.

With TDatabase the table or
query should be linked to the TDa-
tabase component and the Start-
Transaction method should be
executed. To commit changes to
the database execute the TDatabase
Commit method and to cancel use
Rollback. Experiment by using the
StartTransaction, Commit and Roll-
back buttons in the example pro-
gram. It is important that if the
TDataSource is in edit or insert state
then this state should be set to
browse by posting the edit or can-
celling the edit; if this is not per-
formed, expect strange results.
Notice that code placed within the
Commit and Cancel buttons events
perform this: see Listing 1. If the
user starts editing or inserting a
record and the StartTransaction
method on TDatabase was not per-
formed then Delphi will work
implicitly (ie the default method)
and the current record will be
posted automatically.

SQL Passthrough
The other implementation for
explicit transaction control is pass
through SQL via the TQuery compo-
nent. This is when SQL is passed
directly to a server for execution.
Using this method one SQL script
can contain many transactions and
it allows the server to be used to its
full potential as special server
transaction commands can be
utilised. The disadvantage of
unique server commands is the

procedure TfrMainForm.buStartTransactionClick(Sender: TObject);
begin
DataModule2.Database1.StartTransaction;
buStartTransaction.Enabled:= False;
buRollback.Enabled:= True;
buCommit.Enabled:= True;

end;
procedure TfrMainForm.buCommitClick(Sender: TObject);
begin
if DataModule2.DataSource1.State in [dsEdit,dsInsert] then
DataModule2.Table1.Post;

DataModule2.Database1.Commit;
buStartTransaction.Enabled:= True;
buRollback.Enabled:= False;
buCommit.Enabled:= False;

end;
procedure TfrMainForm.buRollbackClick(Sender: TObject);
begin
if DataModule2.DataSource1.State in [dsEdit,dsInsert] then
DataModule2.Table1.Cancel;

DataModule2.DataBase1.Rollback;
buStartTransaction.Enabled:= True;
buRollback.Enabled:= False;
buCommit.Enabled:= False;

end;

➤ Listing 1: TDatabase transaction control

application will be server depend-
ent. The BDE has a UniDirectional
property which if false allows the
results of the TQuery (the dataset)
to be moved forward and back-
wards. If the user or program code
is only going to move forward set
the UniDirectional property to
true. This will save time and
memory by avoiding caching.
When performing queries where
parameters are required don’t
build static queries (ie passing the
SQL to be executed into the TQuery
SQL property). Static queries
require the SQL to be passed to the
BDE and then to the server and you
or Delphi will have to prepare the
query. Instead use queries with
parameter passing: dynamic que-
ries. These queries only have to be
passed and prepared once.

Cached Updates
A CachedUpdates property is avail-
able on TTable, TQuery and
TStoredProc. If this boolean prop-
erty is true updates applied in the
latter components will be cached.

To apply the cached updates use
the ApplyUpdates method which
sends the cached updates in one
batch to the server. This minimises
network traffic. Cached Updates
should be used with implicit trans-
actions (that is, when you are not
using TDatabase.StartTransaction
etc) and the programmer should
use ApplyUpdates for groups of
related fields.

Explicit transactions save on
network I/O and cut down the

number of intervals when a user is
left waiting for a server update to
be applied. This does cost some-
thing! The longer the time between
a transaction starting and being
committed to the database the
greater chance that a lock may
have been applied by another user
or that the data has been altered.
To reduce this a trade off should be
made. I suggest that when data is
updated frequently by different
users, database updates are per-
formed frequently to minimise con-
tention. If data is not updated
frequently then the updates to the
database can be less frequent.

Updating Mode
When Delphi performs an update
on a SQL database it achieves this
by using the SQL command UPDATE
with a WHERE clause to make sure
the correct record is updated. The
WHERE clause not only makes sure
the correct record is updated, but
if the record has changed between
Delphi reading the original record
and performing the update then
the update will fail and raise an
exception. Both TTable and TQuery
have a UpdateMode property that
states the type of SQL WHERE clause
to be generated. The default value
is WhereAll and this is the slowest,
since Delphi uses all the columns
to find the record being updated
and could produce a SQL state-
ment which is too long. The
WhereKeyOnly value is by far the
fastest as only the table key is used
to find the correct record being

September 1997 The Delphi Magazine 49

updated. However the problem
with WhereKeyOnly is that if simul-
taneous updates are performed
exceptions will not be raised
unless the key was modified. This
method should be used if only one
transaction is allowed write access
to the table. I recommend that
WhereChanged is used as Delphi gen-
erates the WHERE clause for only key
fields and any columns that have
changed. This is faster than the
default of WhereAll and still gener-
ates exceptions if the data in the
columns to be updated is out of
synchronisation.

Searching
Delphi 2 and 3 provide various
methods for searching tables:
FindKey, GotoKey and Locate. The
former two are restricted in that
they only search on key fields,
whereas Locate can search on any
type of column. Borland quote “If
Locate is used you will see perform-
ance gains in your application as it
uses the fastest possible method to
locate matching records.” If the
search columns include an index
then the index will be used for a
much quicker search, if not then a
BDE filter is applied. If your appli-
cation uses FindKey or GotoKey then
convert to Locate.

Threads
It is sometimes necessary for the
client to perform separate queries
on different tables and servers at
the same time (not a heterogene-
ous join). If the queries were not
executed simultaneously the user
would wait for the first query to
complete and then for the second
query to complete. With simultane-
ous processing the user will not be
left waiting as long, as both queries
are processed at the same time on
separate servers. To achieve this
the TThread component should be
used. The TThread component
should also be used if you just want
to execute a background query.
TThread has one drawback in that
VCL components are not thread-
safe. To resolve this the Synchro-
nize method should be used. Each
thread must define its own TSes-
sion, TDatabase, TQuery and TData-
Source to avoid conflict between

threads. The TDataSource should
be linked to a visual component (ie
TDBGrid) once the query is com-
plete and should be linked in
through the primary thread using
the Synchronize method.

In the example program if the
menu option Two Threads is
selected you will be able to execute
two SQL threads in parallel (see
Figure 1). Notice that the default
SQL for these two threads is a car-
tesian query (ie all rows in one
table multiplied by all rows in
another table). This is to lengthen
the processing of the query. Both
the queries may be edited. The
main program code for creating
the threads is shown in Listing 2.
This consists of a new class called
TThreadedQuery which accepts the
query to be executed and the
TDBGrid the query output is to be
linked to. The main methods in the
class are Create, Execute and Link-
DataSourceToTDBGrid. Only the
code in the Execute method is per-
formed in the secondary thread
and it is here the query is executed.
Listing 2 has further comments.

Using Your Server
A basic rule of thumb is: if the
server can do the processing then
let it. The more tasks that are
stored on the server will reduce
the amount of network traffic as
the client and server will only be

transmitting parameters and
results. Also, if tasks are stored on
the server they will already be pre-
pared and optimised by the server.
For example if you have a large or
frequently used select statement
make sure the statement is stored
on the server and not the client.

Another advantage with having
tasks stored on the server is that
the tasks can be made available to
other users and systems. Also the
tasks allow business rules to be
stored with the data: an encapsula-
tion if you like, with access
restricted by security. The follow-
ing mechanisms are provided by
all back-end servers and should be
considered: views, stored proce-
dures and triggers.

Many SQL servers have added
extensions to SQL and no stan-
dards exist between vendors on
these extensions. If portability is a
concern pay careful attention to
control flow statements, server
exceptions, etc as they are not
standardised! Also of importance
is locking: Oracle servers imple-
ment row locking and implement
page locks when X numbers of
rows in the current page are
locked. Microsoft SQL Server locks
the page which the row is on.

SQL
Most SQL servers will try to opti-
mise a query, however with good

➤ Figure 1

50 The Delphi Magazine Issue 25

SQL implementation you can fur-
ther increase the optimisation. For
example use the WHERE clause to
reduce the number of rows. When
using the OR clause always have the
first condition least restrictive.
When using LIKE avoid placing a %
in the first character of the pattern
match, as the server will not use an
index, even if one is available. Try
to avoid use of ORDER BY unless the
result set needs to be sorted, as
SQL is set oriented. When using
GROUPBY if possible group to keys, to
allow the server to work faster. Try
to avoid the HAVING clause because
HAVING is applied after the data is
placed in groups. Try and compute
the HAVING clause within the WHERE
clause: it’s much faster.

Sets
If your application is performing
operations on sets of data then use
SQL. This is because SQL is a set

oriented language rather than
record oriented. For example if you
wish to delete customers who live
in England this could be imple-
mented via Delphi code or SQL
(see Listing 3). The SQL implemen-
tation is far more efficient as the
operation would be performed in
one server transaction and most
probably uses only one page lock.
With the former implementation
the data would be passed from the
server to the BDE and the BDE
would perform the operation on a
row-by-row basis. Row-by-row
processing should be avoided
since each row is processed sepa-
rately and this increases the
number of transactions between
the server and client and each row
would be locked separately.

Indexes
When desiging tables go to at least
Third Normal Form. This will mean
you have indexes for all columns
that will be used in relational joins.
It is also advisable to have indexes

for columns that are used by the
SQL ORDER BY clause and the Delphi
Locate or FindKey methods. When
normalising and adding indexes
keep the indexes to what is
required. Foreign key constraints
and indexes lead to slower per-
formance because of the added
maintenance. If the server pro-
vides clustered indexes these
should be considered as they allow
indexed sorted records to be
physically next to each other. This
will increase performance because
when the clustered index is used
the disk head will be ready to read
the next record.

Views And Stored Procedures
Views or stored procedures give
the advantages of the query not
having to be passed to the server
and the view or stored procedure
will already be optimised and com-
piled by the server.

Views can be treated as live que-
ries and if the view is going to be
updated use the WITH CHECK OPTION

➤ Listing 2:
TDatabase transaction control

unit UnitThreads;
interface
uses SysUtils, Forms, Classes, DB, DBTables, DBGrids;

type
TThreadedQuery = class(TThread)
private
FID: string;
FGrid: TDBGrid;
SessionThread: TSession;
DatabaseThread: TDatabase;
QueryThread: TQuery;
DataSourceThread: TDataSource;
FExecuteException: Exception;
procedure LinkDataSourceToTDBGrid;
procedure ShowExecuteException;

protected
procedure Execute; override;

public
constructor Create (const ID, Alias, UserName,
Password: string; QueryStatement: TStrings;
Grid: TDBGrid);
virtual;

destructor Destroy; override;
end;

implementation
uses
UnitStartTwoThreads;

constructor TThreadedQuery.Create(const ID, Alias,
UserName, Password: string; QueryStatement: TStrings;
Grid: TDBGrid);

begin
// Create Thread in a Suspended State
inherited Create(True);
// The rest of the Create processing is still using
// the primary thread so VCL’s can be accessed.
FID:= ID;
FGrid:= Grid;
// Create object instances
SessionThread:= TSession.Create(nil);
DatabaseThread:= TDatabase.Create(nil);
QueryThread:= TQuery.Create(nil);
DataSourceThread:= TDataSource.Create(nil);
// Give the new Session object a unique name
SessionThread.SessionName:= ‘Session’+ID;
with DatabaseThread do begin
// Give the new Database object a unique name
DatabaseName:= ‘DatabaseName’+ID;
// Link the Session object to the Database object
SessionName:= SessionThread.SessionName;
AliasName:= Alias;
Params.Values[‘USER NAME’]:= UserName;
Params.Values[‘PASSWORD’] := Password;

LoginPrompt := False;
end;
with QueryThread do begin
// Link the Database object to the Query object
DatabaseName:= DatabaseThread.DatabaseName;
// Line the Session object to the Query object
SessionName:= SessionThread.SessionName;
// Assign the actual SQL Query to the Query object
SQL.Assign(QueryStatement);

end;
// Don’t allow thread to terminate itself when complete
FreeOnTerminate:= False;
// Resume execution of Thread
Resume;

end;
destructor TThreadedQuery.Destroy;
begin
QueryThread.Close;
DataSourceThread.Free;
QueryThread.Free;
DatabaseThread.Free;
SessionThread.Free;
inherited Destroy;

end;
procedure TThreadedQuery.Execute;
begin
try
// Execute the query
QueryThread.Open;
// Link the Query Object to the DataSource Object
DataSourceThread.DataSet:= QueryThread;
DataSourceThread.Enabled:= True;
Synchronize (LinkDataSourceToTDBGrid);

except
// Save the current exception object
FExecuteException:= ExceptObject as Exception;
Synchronize (ShowExecuteException);

end;
end;
procedure TThreadedQuery.LinkDataSourceToTDBGrid;
begin
// Link the DataSource Object to the Forms DBGrid
FGrid.DataSource:= DataSourceThread;

end;
procedure TThreadedQuery.ShowExecuteException;
begin
// Show error message
Application.ShowException(FExecuteException);

end;
end.

September 1997 The Delphi Magazine 51

Delphi Code Implementation SQL Implementation

With DataModule2.Table1 do begin DELETE FROM CUSTOMER

DisableControls; WHERE COUNTRY = ENGLAND;

First;

While Not EOF do Begin

If FieldByName(‘COUNTRY’).AsString = ‘ENGLAND’

Then Delete

Else Next;

End;

EnableControls;

End;

➤ Listing 3: Delphi code versus SQL

BEGIN
SELECT SUM(budget), AVG(budget), MIN(budget), MAX(budget)
FROM department
WHERE head_dept = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;
SUSPEND;
END

➤ Listing 4: Stored procedure

in the view statement to make sure
that the updates satisfies the WHERE
clause. Views are faster for updat-
ing than TQuerys. The reason for
this is that views are already
understood by the server,
whereas, a TQuery modification will
require the BDE to generate a new
SQL statement which is based on
the original query and then send
the update to the server. This takes
time.

There are, however, rules for
acquiring updateable view tables
and the rules are dependant on the
server being used. If a view
includes a join or uses an aggregate
function then it will be read only.
Note that if the TUpdateSQL compo-
nent is used this will allow a read
only dataset to be updated. When
using parameterised components
such as TStoredProc and TQuery
you should use the Preparemethod
if the component is going to be
used more than once. The Prepare
method prepares the database for
parsing and optimization and
needs only be called once. If Pre-
pare is not called then Delphi will
implicit prepare each time the
query is executed.

Listing 4 displays the stored pro-
cedure from the Delphi IBLOCAL
database. The example program
uses this procedure under the
menu item Other Options | Stored
Procedure. You will find that this
procedure is prepared only once in
the Data Module OnCreate event. If
a query has been explicitly pre-
pared and the query will remain
unused for sometime then use the
UnPrepare method to release data-
base resources.

Delphi 2 and 3 provide filters on
TTable, TQuery and TStoredProc
that allow restrictive views on
datasets. Filters are applied when
the data has been received from
the server and placed in the data-
set, because of this you should
only use filters on small datasets.
To limit the size of the dataset use
SQL to apply a filter. This will mean
only filtered data from the server is
transmitted to the client and will
save much processing time.

Also note that the FindFirst and
FindNext work in the same way as a
filter. If possible use ranges instead

of filters as ranges only retrieve
rows from the table that are within
the range, thus saving processing
time. Ranges, however, can only be
applied on keys.

Triggers
Triggers are statements that are
processed when a table or view
goes into a specific state, ie the
change of state results in a trigger.
The states are INSERT, UPDATE and
DELETE. Triggers can be used to per-
formed validation or to update
other tables or views automati-
cally. This functionality provide a
means for implementing rules with
the actual data in that the data will
only get updated if the insert,
update or delete validates cor-
rectly on the server. This removes
the client from performing valida-
tion. An example of a trigger is in
the Customer table where the trig-
ger is CHECK (on_hold is NULL OR
on_hold = ‘*’). This trigger simply
checks that the column on_hold for
the row being inserted or updated
is null or is a *. To verify this run
the program IBLOCAL and try
updating the on-hold column to
contain a value other than null or a
*, you will find that an exception is
raised if you try to post or move off
the record.

Server Tuning
For optimum performance tuning
the server is critical and this would

be performed by the database
administrator. The administrator
will be concerned with improving
overall performance of the data-
base and will perform tasks such as
changing the database page size,
adding or removing indexes, frag-
mentation etc. When developing a
client/server application make
sure the database administrator is
aware of what tables you will be
using heavily so that the adminis-
trator can tune appropriately. For
example if you are using an existing
table and are expecting to fre-
quently order the data in a speci-
fied column ask if the column can
be defined as a secondary index.
This will save server time on the
SQL clauses using this column.

Other Options
Other options are available which
are well known. For example your
application can provide automatic
login to the database by setting up
the TDatabase params USER NAME
and PASSWORD properties or by
using the TDatabase OnLogin event
handler.

Note that the TDatabase Login-
Prompt property should also be set
to false. Allowing automated login
to databases presents a security
risk and I recommend that if the
user will be using a network sup-
ported by Microsoft Windows that
the BDE API function DBIGetNetUs-
erName is used. This function

52 The Delphi Magazine Issue 25

implementation
uses DBIProcs, DBIErrs, DBITypes;

{$R *.DFM}
function GetNetUserName: String;
begin
SetLength(Result, dbiMaxUserNameLen + 1);
// Get network user name and call Check to generate an exection if an error
Check(DbiGetNetUserName(PChar(Result)));
SetLength(Result, StrLen(PChar(Result)));

end;
procedure TDataModule2.Database1Login(Database: TDatabase;
LoginParams: TStrings);

begin
// Provide automatic login if know user
if GetNetUserName=’DAVID’ then begin
LoginParams.Values[‘USER NAME’] := ‘SYSDBA’;
LoginParams.Values[‘PASSWORD’] := ‘masterkey’;
end;

end;

➤ Listing 5: Network user name and automated TDatabase login

returns the logged in user-name.
Your application could then pass
the returned username to the TDa-
tabase user name parameter or
compare the user name with valid
know user-names before providing
automated login. An example of
this is given in Listing 5.

The field editor should be used
to create persistent fields with
dataset components. This will
improve speed as Delphi will not
have to implicitly acquire this
information from the server, and
an exception will be raised should
the dataset configuration change.
Also if persistent fields are created
you can use TFields to access the
fields in a record. Using TField is
much faster than using the Field-
ByName method as FieldByName or
the Fields property as they walk
the table schema to acquire infor-
mation. Whereas TField informa-
tion is compiled within the
application.

If performing operations on
batches of data then the TBatchMove
component may provide the
required functionality. TBatchMove
allows appending, updating, copy-
ing and deleting of batches of data
and provides mechanisms for stor-
ing errors that occurr when the
component is executed. If doing
large batch operations it may be
advantageous to drop the indexes,
perform the batch operation and
then re-create the original indexes.
This will generally require exclu-
sive use of the table. When the pro-
gram is scrolling through a dataset
use the DisableControls method to
avoid constant screen repainting.
To check for updates on a server
use the Refresh method of TTable,
TQuery, or TStoredProc, rather than
closing and re-opening the dataset.
Refresh is quicker. If a field is read
only then use the read only compo-
nent (ie DBText). Also the label com-
ponent can be used if the data is
not expected to change on the
server. The same mechanism
should also be consider with
combo boxes and list boxes. If the
table is read only, consider copy-
ing data to a local table or to a
memory combobox. This will save
much network traffic IO. Try to
avoid fetching information that is

not required. For example only
fetch and display information that
the user requires. Often the
TDBGrid component is used and
this requires lots of resources from
the server, network and client. If
TDBGrid is used, only include col-
umns that are required; avoid
fetching unwanted data.

The BDE allows the programmer
to create in-memory tables via Dbi-
CreateInMemTable. These tables
since they exist in ram are consid-
erably fast. However they are only
suitable for small tables and
cannot be indexed or saved to disk.
If you require fast access to small
tables then in-memory tables will
provide this requirement.

General Improvements
Other improvements which are
applicable to general Delphi appli-
cations are:
➢ Enable compiler optimisation,
➢ Disable runtime checking (I ad-

vise against this),
➢ Don’t auto-create forms,
➢ Use constants parameters in

procedure/functions,
➢ Avoid variant type variables,
➢ Use threads for background

processes.
These should give you some ideas
to work with!

VCL
It is possible to get carried away
making a client/server application
run as fast as possible. For exam-
ple, you could set up a stored pro-
cedure on the server to perform
inserts of new customers in the
customers table. Your application
could get the required fields from

standard TEdit fields and passed
the fields to the stored procedure
on the server. This technique is ill-
advised as the amount of coding
on both the client and server
would be outweighed by the bene-
fits. If the VCL provides the
functionality, use it.

Conclusion
The ability to achieve faster execu-
tion of client server applications or
other applications comes at a cost:
more time spent on designing,
implementing and testing the
application.

Hopefully this article will save
you time in design and implemen-
tation, now that you are aware of
the client/server acceleration pos-
sibilities.

I do advise you not to go over-
board on making an application
run faster: always try to avoid
coding if the rewards are going to
be few. More coding means more
maintenance.

Certain areas will always be
beyond the developer’s control,
such as a slow network: all you can
do is highlight the problem. Per-
haps you could ask for bigger
packet sizes, since bigger packets
will contain more data and this will
reduce the number of packets and
acknowledgements required.

David Selwood works as a free-
lance contractor; you can reach
him by email at
dselwood@aol.com

	Faster Driving
	Sharing Your Data Access
	Get Connected
	Transactions
	Explicit Transaction ControlExplicit Transaction Control
	SQL Passthrough
	Cached Updates
	Updating Mode
	Searching
	Threads
	Using Your Server
	SQL
	Sets
	Indexes
	Views And Stored Procedures
	Triggers
	Server Tuning
	Other Options
	General Improvements
	VCL
	Conclusion

